以下文章是小编精心整理的文科高考数学真题全国卷1,可供大家参考阅读,希望能够帮助到大家。
文科高考数学真题全国卷1
一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.
1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()
A.3 B.6 C.8 D.10
2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()
A.12种 B.10种 C.9种 D.8种
3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),
p1:|z|=2,
p2:z2=2i,
p3:z的共轭复数为1+i,
p4:z的虚部为﹣1.
A.p2,p3 B.p1,p2 C.p2,p4 D.p3,p4
4.(5分)设F1、F2是椭圆E:+
=1(a>b>0)的左、右焦点,P为直线x=
上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()
A. B.
C.
D.
5.(5分)已知{an}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()
A.7 B.5 C.﹣5 D.﹣7
6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,an,输出A,B,则()
A.A+B为a1,a2,…,an的和
B.为a1,a2,…,an的算术平均数
C.A和B分别是a1,a2,…,an中最大的数和最小的数
D.A和B分别是a1,a2,…,an中最小的数和最大的数
7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()
A.6 B.9 C.12 D.18
8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()
A. B.
C.4 D.8
9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[
,π]上单调递减,则实数ω的取值范围是()
A. B.
C.
D.(0,2]
10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()
A. B.
C. D.
11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()
A. B.
C.
D.
12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()
A.1﹣ln2 B. C.1+ln2 D.
二.填空题:本大题共4小题,每小题5分.
13.(5分)已知向量夹角为45°,且
,则
= .
14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .
15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .
16.(5分)数列{an}满足an+1+(﹣1)nan=2n﹣1,则{an}的前60项和为 .
三、解答题:解答应写出文字说明,证明过程或演算步骤.
17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+asinC﹣b﹣c=0
(1)求A;
(2)若a=2,△ABC的面积为;求b,c.
18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:
日需求量n14151617181920
频数10201616151310
以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.
19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD
(1)证明:DC1⊥BC;
(2)求二面角A1﹣BD﹣C1的大小.
20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
21.(12分)已知函数f(x)满足f(x)=f′(1)ex﹣1﹣f(0)x+x2;
(1)求f(x)的解析式及单调区间;
(2)若,求(a+1)b的最大值.
四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.
22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:
(1)CD=BC;
(2)△BCD∽△GBD.
23.选修4﹣4;坐标系与参数方程
已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,
).
(1)求点A,B,C,D的直角坐标;
(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.
24.已知函数f(x)=|x+a|+|x﹣2|
①当a=﹣3时,求不等式f(x)≥3的解集;
②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.
参考答案与试题解析
一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.
1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()
A.3 B.6 C.8 D.10
【考点】12:元素与集合关系的判断
【专题】5J:集合.
【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项
【解答】解:由题意,x=5时,y=1,2,3,4,
x=4时,y=1,2,3,
x=3时,y=1,2,
x=2时,y=1
综上知,B中的元素个数为10个
故选:D.
【点评】本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数.
2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()
A.12种 B.10种 C.9种 D.8种
【考点】D9:排列、组合及简单计数问题
【专题】11:计算题.
【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果
【解答】解:第一步,为甲地选一名老师,有=2种选法;
第二步,为甲地选两个学生,有=6种选法;
第三步,为乙地选1名教师和2名学生,有1种选法
故不同的安排方案共有2×6×1=12种
故选:A.
【点评】本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题
3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),
p1:|z|=2,
p2:z2=2i,
p3:z的共轭复数为1+i,
p4:z的虚部为﹣1.
A.p2,p3 B.p1,p2 C.p2,p4 D.p3,p4
【考点】2K:命题的真假判断与应用;A5:复数的运算
【专题】11:计算题.
【分析】由z==
=﹣1﹣i,知
,
,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.
【解答】解:∵z==
=﹣1﹣i,
∴,
,
p3:z的共轭复数为﹣1+i,
p4:z的虚部为﹣1,
故选:C.
【点评】本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答.
4.(5分)设F1、F2是椭圆E:+
=1(a>b>0)的左、右焦点,P为直线x=
上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()
A. B.
C.
D.
【考点】K4:椭圆的性质
【专题】11:计算题.
【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.
【解答】解:∵△F2PF1是底角为30°的等腰三角形,
∴|PF2|=|F2F1|
∵P为直线x=上一点
∴
∴
故选:C.
【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.
5.(5分)已知{an}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()
A.7 B.5 C.﹣5 D.﹣7
【考点】87:等比数列的性质;88:等比数列的通项公式
【专题】11:计算题.
【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可
【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8
∴a4=4,a7=﹣2或a4=﹣2,a7=4
当a4=4,a7=﹣2时,,
∴a1=﹣8,a10=1,
∴a1+a10=﹣7
当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1
∴a1+a10=﹣7
综上可得,a1+a10=﹣7
故选:D.
【点评】本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.
6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,an,输出A,B,则()
A.A+B为a1,a2,…,an的和
B.为a1,a2,…,an的算术平均数
C.A和B分别是a1,a2,…,an中最大的数和最小的数
D.A和B分别是a1,a2,…,an中最小的数和最大的数
【考点】E7:循环结构
【专题】5K:算法和程序框图.
【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,an中最大的数和最小的数.
【解答】解:分析程序中各变量、各语句的作用,
再根据流程图所示的顺序,
可知,该程序的作用是:求出a1,a2,…,an中最大的数和最小的数
其中A为a1,a2,…,an中最大的数,B为a1,a2,…,an中最小的数
故选:C.
【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.
7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()
A.6 B.9 C.12 D.18
【考点】L!:由三视图求面积、体积
【专题】11:计算题.
【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.
【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;
底面三角形斜边长为6,高为3的等腰直角三角形,
此几何体的体积为V=×6×3×3=9.
故选:B.
【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.
8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()
A. B.
C.4 D.8
【考点】KI:圆锥曲线的综合
【专题】11:计算题;16:压轴题.
【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.
【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),
y2=16x的准线l:x=﹣4,
∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,
∴A(﹣4,2),B(﹣4,﹣2
),
将A点坐标代入双曲线方程得=4,
∴a=2,2a=4.
故选:C.
【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[
,π]上单调递减,则实数ω的取值范围是()
A. B.
C.
D.(0,2]
【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式
【专题】11:计算题;16:压轴题.
【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.
法二:可以通过角的范围,直接推导ω的范围即可.
【解答】解:法一:令:不合题意 排除(D)
合题意 排除(B)(C)
法二:,
得:.
故选:A.
【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.
10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()
A. B.
C. D.
【考点】4N:对数函数的图象与性质;4T:对数函数图象与性质的综合应用
【专题】11:计算题.
【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明
【解答】解:设
则g′(x)=
∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数
∴g(x)<g(0)=0
∴f(x)=<0
得:x>0或﹣1<x<0均有f(x)<0排除A,C,
又f(x)=中,
,能排除D.
故选:B.
【点评】本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题
11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()
A. B.
C.
D.
【考点】LF:棱柱、棱锥、棱台的体积
【专题】11:计算题;5F:空间位置关系与距离.
【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.
【解答】解:根据题意作出图形:
设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,
延长CO1交球于点D,则SD⊥平面ABC.
∵CO1==
,
∴OO1==
,
∴高SD=2OO1=,
∵△ABC是边长为1的正三角形,
∴S△ABC=,
∴V三棱锥S﹣ABC==
.
故选:C.
【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.
12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()
A.1﹣ln2 B. C.1+ln2 D.
【考点】4R:反函数;IT:点到直线的距离公式
【专题】5D:圆锥曲线的定义、性质与方程.
【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数
上的点
到直线y=x的距离为
的最小值,
设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.
【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,
函数上的点
到直线y=x的距离为
,
设g(x)=(x>0),则
,
由≥0可得x≥ln2,
由<0可得0<x<ln2,
以下文章是小编精心整理的文科高考数学真题全国卷1,可供大家参考阅读,希望能够帮助到大家。
文科高考数学真题全国卷1
一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.
1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()
A.3 B.6 C.8 D.10
2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()
A.12种 B.10种 C.9种 D.8种
3.(5分)下面是关于复数z=的四个命题:其中的真命题为(),
p1:|z|=2,
p2:z2=2i,
p3:z的共轭复数为1+i,
p4:z的虚部为﹣1.
A.p2,p3 B.p1,p2 C.p2,p4 D.p3,p4
4.(5分)设F1、F2是椭圆E:+
=1(a>b>0)的左、右焦点,P为直线x=
上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为()
A. B.
C.
D.
5.(5分)已知{an}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=()
A.7 B.5 C.﹣5 D.﹣7
6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,an,输出A,B,则()
A.A+B为a1,a2,…,an的和
B.为a1,a2,…,an的算术平均数
C.A和B分别是a1,a2,…,an中最大的数和最小的数
D.A和B分别是a1,a2,…,an中最小的数和最大的数
7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()
A.6 B.9 C.12 D.18
8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为()
A. B.
C.4 D.8
9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[
,π]上单调递减,则实数ω的取值范围是()
A. B.
C.
D.(0,2]
10.(5分)已知函数f(x)=,则y=f(x)的图象大致为()
A. B.
C. D.
11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()
A. B.
C.
D.
12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为()
A.1﹣ln2 B. C.1+ln2 D.
二.填空题:本大题共4小题,每小题5分.
13.(5分)已知向量夹角为45°,且
,则
= .
14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .