大家好,今天小编为大家整理了一些有关于全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)的内容,希望可以对大家有帮助,欢迎各位阅读和下载。
全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()
A.{0} B.{1} C.{1,2} D.{0,1,2}
2.(5分)(1+i)(2﹣i)=()
A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i
3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()
A. B.
C. D.
4.(5分)若sinα=,则cos2α=()
A. B.
C.﹣
D.﹣
5.(5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()
A.0.3 B.0.4 C.0.6 D.0.7
6.(5分)函数f(x)=的最小正周期为()
A. B.
C.π D.2π
7.(5分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()
A.y=ln(1﹣x) B.y=ln(2﹣x) C.y=ln(1+x) D.y=ln(2+x)
8.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆
(x﹣2)2+y2=2上,则△ABP面积的取值范围是()
A.[2,6] B.[4,8] C.[,3
] D.[2
,3
]
9.(5分)函数y=﹣x4+x2+2的图象大致为()
A. B.
C. D.
10.(5分)已知双曲线C:﹣
=1(a>0,b>0)的离心率为
,则点(4,0)到C的渐近线的距离为()
A. B.2 C.
D.2
11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()
A. B.
C.
D.
12.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()
A.12 B.18
C.24
D.54
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)已知向量=(1,2),
=(2,﹣2),
=(1,λ).若
∥(2
+
),则λ= .
14.(5分)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是 .
15.(5分)若变量x,y满足约束条件,则z=x+
y的最大值是 .
16.(5分)已知函数f(x)=ln(﹣x)+1,f(a)=4,则f(﹣a)= .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。
17.(12分)等比数列{an}中,a1=1,a5=4a3.
(1)求{an}的通项公式;
(2)记Sn为{an}的前n项和.若Sm=63,求m.
18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:
超过m不超过m
第一种生产方式
第二种生产方式
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:K2=,
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
19.(12分)如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是
上异于C,D的点.
(1)证明:平面AMD⊥平面BMC;
(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.
20.(12分)已知斜率为k的直线l与椭圆C:+
=1交于A,B两点,线段AB的中点为M(1,m)(m>0).
(1)证明:k<﹣;
(2)设F为C的右焦点,P为C上一点,且+
+
=
,证明:2|
|=|
|+|
|.
21.(12分)已知函数f(x)=.
(1)求曲线y=f(x)在点(0,﹣1)处的切线方程;
(2)证明:当a≥1时,f(x)+e≥0.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)
22.(10分)在平面直角坐标系xOy中,⊙O的参数方程为,(θ为参数),过点(0,﹣
)且倾斜角为α的直线l与⊙O交于A,B两点.
(1)求α的取值范围;
(2)求AB中点P的轨迹的参数方程.
[选修4-5:不等式选讲](10分)
23.设函数f(x)=|2x+1|+|x﹣1|.
(1)画出y=f(x)的图象;
(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.
参考答案与试题解析
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()
A.{0} B.{1} C.{1,2} D.{0,1,2}
【考点】1E:交集及其运算.菁优网版权所有
【专题】37:集合思想;4A:数学模型法;5J:集合.
【分析】求解不等式化简集合A,再由交集的运算性质得答案.
【解答】解:∵A={x|x﹣1≥0}={x|x≥1},B={0,1,2},
∴A∩B={x|x≥1}∩{0,1,2}={1,2}.
故选:C.
【点评】本题考查了交集及其运算,是基础题.
2.(5分)(1+i)(2﹣i)=()
A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i
【考点】A5:复数的运算.菁优网版权所有
【专题】38:对应思想;4A:数学模型法;5N:数系的扩充和复数.
【分析】直接利用复数代数形式的乘除运算化简得答案.
【解答】解:(1+i)(2﹣i)=3+i.
故选:D.
【点评】本题考查了复数代数形式的乘除运算,是基础题.
3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()
A. B.
C. D.
【考点】L7:简单空间图形的三视图.菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.
【分析】直接利用空间几何体的三视图的画法,判断选项的正误即可.
【解答】解:由题意可知,如图摆放的木构件与某一带卯眼的木构件咬合成长方体,小的长方体,是榫头,从图形看出,轮廓是长方形,内含一个长方形,并且一条边重合,另外3边是虚线,所以木构件的俯视图是A.
故选:A.
【点评】本题看出简单几何体的三视图的画法,是基本知识的考查.
4.(5分)若sinα=,则cos2α=()
A. B.
C.﹣
D.﹣
【考点】GS:二倍角的三角函数.菁优网版权所有
【专题】11:计算题;34:方程思想;4O:定义法;56:三角函数的求值.
【分析】cos2α=1﹣2sin2α,由此能求出结果.
【解答】解:∵sinα=,
∴cos2α=1﹣2sin2α=1﹣2×=
.
故选:B.
【点评】本题考查二倍角的余弦值的求法,考查二倍角公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.
5.(5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()
A.0.3 B.0.4 C.0.6 D.0.7
【考点】C5:互斥事件的概率加法公式;CB:古典概型及其概率计算公式.菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.
【分析】直接利用互斥事件的概率的加法公式求解即可.
【解答】解:某群体中的成员只用现金支付,既用现金支付也用非现金支付,不用现金支付,是互斥事件,
所以不用现金支付的概率为:1﹣0.45﹣0.15=0.4.
故选:B.
【点评】本题考查互斥事件的概率的求法,判断事件是互斥事件是解题的关键,是基本知识的考查.
6.(5分)函数f(x)=的最小正周期为()
A. B.
C.π D.2π
【考点】H1:三角函数的周期性.菁优网版权所有
【专题】35:转化思想;49:综合法;57:三角函数的图像与性质.
【分析】利用同角三角函数的基本关系、二倍角的正弦公式化简函数的解析式,再利用正弦函数的周期性,得出结论.
【解答】解:函数f(x)==
=
sin2x的最小正周期为
=π,
故选:C.
【点评】本题主要考查同角三角函数的基本关系、二倍角的正弦公式,正弦函数的周期性,属于基础题.
7.(5分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()
A.y=ln(1﹣x) B.y=ln(2﹣x) C.y=ln(1+x) D.y=ln(2+x)
【考点】3A:函数的图象与图象的变换.菁优网版权所有
【专题】35:转化思想;51:函数的性质及应用.
【分析】直接利用函数的图象的对称和平移变换求出结果.
【解答】解:首先根据函数y=lnx的图象,
则:函数y=lnx的图象与y=ln(﹣x)的图象关于y轴对称.
由于函数y=lnx的图象关于直线x=1对称.
则:把函数y=ln(﹣x)的图象向右平移2个单位即可得到:y=ln(2﹣x).
即所求得解析式为:y=ln(2﹣x).
故选:B.
【点评】本题考查的知识要点:函数的图象的对称和平移变换.
8.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆
(x﹣2)2+y2=2上,则△ABP面积的取值范围是()
A.[2,6] B.[4,8] C.[,3
] D.[2
,3
]
【考点】J9:直线与圆的位置关系.菁优网版权所有
【专题】11:计算题;34:方程思想;49:综合法;5B:直线与圆.
【分析】求出A(﹣2,0),B(0,﹣2),|AB|=2,设P(2+
,
),点P到直线x+y+2=0的距离:
d==
∈[
],
由此能求出△ABP面积的取值范围.
【解答】解:∵直线x+y+2=0分别与x轴,y轴交于A,B两点,
∴令x=0,得y=﹣2,令y=0,得x=﹣2,
∴A(﹣2,0),B(0,﹣2),|AB|==2
,
∵点P在圆(x﹣2)2+y2=2上,∴设P(2+,
),
∴点P到直线x+y+2=0的距离:
d==
,
∵sin()∈[﹣1,1],∴d=
∈[
],
∴△ABP面积的取值范围是:
[,
]=[2,6].
故选:A.
【点评】本题考查三角形面积的取值范围的求法,考查直线方程、点到直线的距离公式、圆的参数方程、三角函数关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.
9.(5分)函数y=﹣x4+x2+2的图象大致为()
A. B.
C. D.
【考点】3A:函数的图象与图象的变换.菁优网版权所有
【专题】38:对应思想;4R:转化法;51:函数的性质及应用.
【分析】根据函数图象的特点,求函数的导数利用函数的单调性进行判断即可.
【解答】解:函数过定点(0,2),排除A,B.
函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1),
由f′(x)>0得2x(2x2﹣1)<0,
得x<﹣或0<x<
,此时函数单调递增,
由f′(x)<0得2x(2x2﹣1)>0,
得x>或﹣
<x<0,此时函数单调递减,排除C,
也可以利用f(1)=﹣1+1+2=2>0,排除A,B,
故选:D.
【点评】本题主要考查函数的图象的识别和判断,利用函数过定点以及判断函数的单调性是解决本题的关键.
10.(5分)已知双曲线C:﹣
=1(a>0,b>0)的离心率为
,则点(4,0)到C的渐近线的距离为()
A. B.2 C.
D.2
【考点】KC:双曲线的性质.菁优网版权所有
【专题】11:计算题;34:方程思想;49:综合法;5D:圆锥曲线的定义、性质与方程.
【分析】利用双曲线的离心率求出a,b的关系,求出双曲线的渐近线方程,利用点到直线的距离求解即可.
【解答】解:双曲线C:﹣
=1(a>0,b>0)的离心率为
,
可得=
,即:
,解得a=b,
双曲线C:﹣
=1(a>b>0)的渐近线方程玩:y=±x,
点(4,0)到C的渐近线的距离为:=2
.
故选:D.
【点评】本题看出双曲线的简单性质的应用,考查转化思想以及计算能力.
11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()
A. B.
C.
D.
【考点】HR:余弦定理.菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;58:解三角形.
【分析】推导出S△ABC==
,从而sinC=
=cosC,由此能求出结果.
【解答】解:∵△ABC的内角A,B,C的对边分别为a,b,c.
△ABC的面积为,
∴S△ABC==
,
∴sinC==cosC,
∵0<C<π,∴C=.
故选:C.
【点评】本题考查三角形内角的求法,考查余弦定理、三角形面积公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.
12.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()
A.12 B.18
C.24
D.54
【考点】LF:棱柱、棱锥、棱台的体积;LG:球的体积和表面积.菁优网版权所有
【专题】11:计算题;31:数形结合;34:方程思想;35:转化思想;49:综合法;5F:空间位置关系与距离.
【分析】求出,△ABC为等边三角形的边长,画出图形,判断D的位置,然后求解即可.
大家好,今天小编为大家整理了一些有关于全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)的内容,希望可以对大家有帮助,欢迎各位阅读和下载。
全国统一高考数学试卷(文科)(新课标ⅲ)(含解析版)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()
A.{0} B.{1} C.{1,2} D.{0,1,2}
2.(5分)(1+i)(2﹣i)=()
A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i
3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()
A. B.
C. D.
4.(5分)若sinα=,则cos2α=()
A. B.
C.﹣
D.﹣
5.(5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()
A.0.3 B.0.4 C.0.6 D.0.7
6.(5分)函数f(x)=的最小正周期为()
A. B.
C.π D.2π
7.(5分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()
A.y=ln(1﹣x) B.y=ln(2﹣x) C.y=ln(1+x) D.y=ln(2+x)
8.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆
(x﹣2)2+y2=2上,则△ABP面积的取值范围是()
A.[2,6] B.[4,8] C.[,3
] D.[2
,3
]
9.(5分)函数y=﹣x4+x2+2的图象大致为()
A. B.
C. D.
10.(5分)已知双曲线C:﹣
=1(a>0,b>0)的离心率为
,则点(4,0)到C的渐近线的距离为()
A. B.2 C.
D.2
11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()
A. B.
C.
D.
12.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()
A.12 B.18
C.24
D.54
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)已知向量=(1,2),
=(2,﹣2),
=(1,λ).若
∥(2
+
),则λ= .
14.(5分)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是 .
15.(5分)若变量x,y满足约束条件,则z=x+
y的最大值是 .
16.(5分)已知函数f(x)=ln(﹣x)+1,f(a)=4,则f(﹣a)= .
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。
17.(12分)等比数列{an}中,a1=1,a5=4a3.
(1)求{an}的通项公式;
(2)记Sn为{an}的前n项和.若Sm=63,求m.